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Scientific Computing and Learning

modeling, data, decision-making, ...

plenty of amazing things

simulation, prediction, design, ...
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Scientific Computing and Learning

Mathematical Challenges:

Solving equations
multiscale physics
heterogeneous material
large scale PDEs ...

Need many degrees of freedom
for enough accuracy

Learning solutions
trials and errors
training
uncertainties ...

Sometimes machine learning
automation may not be robust

Research Goal: further accuracy and more reliable automation
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Outline

1 Exponentially Convergent Multiscale Methods for PDEs
“how to get very accurate solutions via multiscale analysis”

2 Gaussian Processes for PDEs and Inverse Problems
“how to get reliable automated solutions via Bayes inference”
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Part I: Exponentially Convergent Multiscale Methods

Thomas Y. Hou
Caltech

Yixuan Wang
Caltech
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Solving Multiscale PDEs

Model Problem:

−∇ · (A∇u) + V u = f, in Ω, w/ boundary conditions

(subsurface flows, diffusions, elasticity, waves in composite media)

Mathematical Condition:
heterogeneity: A, V ∈ L∞(Ω) (no scale separation)
0 < Amin ≤ A(x) ≤ Amax <∞
high frequency: e.g., V = −k2 (Helmholtz’s equation)
regularity of force: f ∈ L2(Ω)
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Numerical Challenges

Galerkin’s Method:
find a space S of basis functions to approximate the solution
quasi-optimality: solution err ∼ approximation err

Challenges:
heterogeneity ⇒ u is oscillatory
(!) approx-err of FEM can be arbitrarily bad [Babuška, Osborn 2000]

high frequency ⇒ stability issues1

example: ‖u‖H(Ω) ≤ Cstab(k)‖f‖L2(Ω) for Cstab(k) � 1 + kγ

(!) approx-err amplified; quasi-optimality also deteriorates
known as pollution effect [Babuška, Sauter, 1997]

1H(Ω) is the energy norm
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Multiscale Methods / Numerical Homogenization / ...

Idea: find better basis functions adapted to A and V
tremendous literature with different constructions (find structures)
(hp-FEM, GFEM, MsFEM, HMM, VMS, LOD, ...)

Our Focus: push approximation err further, for exponential convergence
previous work for elliptic eqns based on GFEM [Babuška, Lipton 2011]2

Our contribution: ExpMsFEM [Chen, Hou, Wang 2021,2021,2022]

A general multiscale framework for elliptic and Helmholtz eqns

2further generalization to Helmholtz eqns [Ma, Alber, Scheichl 2021]
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How Could Exponential Convergence Be Achieved?

Principle: how exponential convergence possible for nonsmooth funcs?
coarse-fine scale decomposition: diff-scales treated differently
localize the approximation for both the coarse and fine components
find low complexity structures of the coarse scale component

Instantiation in ExpMsFEM for finding exp-convergent representation
1 generalized harmonic-bubble splitting
2 edge localization
3 oversampling and exponentially decaying spectral problems
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Step 1: Generalized Harmonic-bubble Splitting3

mesh: H = O(1/k)

split the solution locally:
in each T , u = uhT + ubT®−∇ · (A∇uhT ) + V uhT = 0, in T

uhT = u, on ∂T®−∇ · (A∇ubT ) + V ubT = f, in T

ubT = 0, on ∂T

global function:
uh(x) = uhT (x) locally “harmonic”
ub(x) = ubT (x) locally computable
when x ∈ T for each T

T

e

x

x ∈ NH , e ∈ EH , T ∈ TH

First Decomposition : u = uh + ub

3[Hetmaniuk, Lehoucq 2010], [Hou, Liu 2016]
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Step 2: Edge Localization

Recall u = uh + ub “locally harmonic + locally computable”

uh = Qũ (Q: “harmonic” extension operator; ũ = u|edges)
= Q(ũ− IH ũ) +QIH ũ (IH : nodal interpolation on edges)

= Q(ũ− IH ũ) +
∑

xi∈NH

u(xi)ψi

(ψi: basis funcs in MsFEM [Hou, Wu 1997])

=
∑
e∈EH

QReu+
∑

xi∈NH

u(xi)ψi (Reu = (ũ− IH ũ)|e)

uh = “sum of terms dependent on each edge + a term represented by ψi”
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uh = “sum of terms dependent on each edge + a term represented by ψi”

Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 11/34



Step 3: Oversampling4 and Low Complexity Structure

Oversampling: consider e ⊂ ωe

on e : QReu = QRe(u|ωe)= QReu
h
ωe

+QReu
b
ωe

Here, uhωe
, ubωe

: oversampling harmonic / bubble part in ωe

Recall the definition:®−∇ · (A∇uhωe
) + V uhωe

= 0, in ωe
uhωe

= u, on ∂ωe®−∇ · (A∇ubωe
) + V ubωe

= f, in ωe
ubωe

= 0, on ∂ωe

e

ωe

interior edge

QReu = “restriction of local harmonic funcs + locally computable”

4historically proposed in [Hou, Wu 1997] to reduce the resonance error in MsFEM
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Step 3: Oversampling and Low Complexity Structure

Low complexity: restriction of “harmonic” funcs [Babuška, Lipton 2011]

generalize to our context: singular values of the operator

QRe : (U(ωe), ‖ · ‖H(ωe))→ (H(Ω), ‖ · ‖H(Ω))

decay exponentially fast [Chen, Hou, Wang 2021] , where

U(ωe) := {v ∈ H(ωe) : −∇ · (A∇v) + V v = 0, in ωe}

equivalently, for m > 0, there exists be,j , ve,j , 1 ≤ j ≤ m s.t.

‖QReuhωe
−

∑
1≤j≤m

be,jve,j‖H(Ω) ≤ C exp
Ä
−bm 1

d+1

ä
‖uhωe

‖H(ωe)

QReu
h
ωe

= “a term represented by m basis funcs + small err”
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The Representation and Algorithm

u =

Ñ∑
e∈EH

∑
1≤j≤m

be,jve,j +
∑

xi∈NH

u(xi)ψi

é
+

(
ub +

∑
e∈EH

QReu
b
ωe

)
+O
Ä
exp
Ä
−bm 1

d+1

ä
(‖u‖H(Ω) + ‖f‖L2(Ω))

ä
Offline: one-time model reduction

compute {ve,j}, 1 ≤ j ≤ m for each e, and ψi for each node
(local SVD and harmonic extension; parallelizable)

Online: efficient for multiple f
compute un = ub +

∑
e∈EH QReu

b
ωe

(solve local equations involving f ; parallelizable)
Galerkin’s method using basis funcs {ve,j} and ψi to solve

a(uH,m, v) = (f, v)Ω − a(un, v)

‖u− uH,m − un‖H(Ω) = O
Ä
exp
Ä
−bm 1

d+1

ä
(‖u‖H(Ω) + ‖f‖L2(Ω))

ä
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Numerical Experiments: Helmholtz’s Equation

The problem set-up
equation

−∇ · (A∇u) + V u = f, in Ω = [0, 1]2

boundary condition: mixed (Dirichlet + Neumann + Robin)
A(x) = |ξ(x)|+ 0.5 where ξ(x) is piecewise linear functions with
values as unit Gaussians r.v.; piecewise scale: 2−7

−V/k2 draws from the same random field; k = 25

f(x1, x2) = x4
1 − x3

2 + 1

Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 15/34



Visualization of the Field
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Numerical Experiments: Helmholtz’s Equation

The mesh
quadrilateral mesh
fine mesh size h = 2−10, coarse mesh size H = 2−5

The accuracy of ExpMsFEM’s solution compared to fine mesh solution
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Figure: Numerical results for the mixed boundary and rough field example. Left:
eH versus m; right: eL2 versus m. Number of basis functions (2m+ 1)/H2
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Summary of Part I

Exponentially convergent function representation
multiscale (coarse-fine) decomposition is the key
low complexity of the coarse part: restriction of harmonic-type funcs
locality of the fine part: locally solvable

Future directions:
advection-dominated problems
time dependent problems
non-intrusive model reduction and operator learning

multiscale analysis + low complexity structures

Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 18/34



Outline

1 Exponentially Convergent Multiscale Methods for PDEs
“how to get very accurate solutions via multiscale analysis”

2 Gaussian Processes for PDEs and Inverse Problems
“how to get reliable automated solutions via Bayes inference”
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Part II: Gaussian Processes for PDEs and Inverse Problems

Bamdad Hosseini
Univ. of Washington

Houman Owhadi
Caltech

Andrew M. Stuart
Caltech
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Scientific Machine Learning Automation

Expert designed numerical analysis: analyzing the equation
finite difference/element/volume, spectral, multiscale methods ...
well developed convergence theory, and robustness/efficiency tradeoff

Automatic machine learning paradigm: equation as data
PINNs, deep Ritz methods, operator learning ...
unify solving PDEs and inverse problems (IPs), algorithmically
many empirical success; theory more complicated

Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 20/34



Scientific Machine Learning Automation

Our Focus: Bridging the gap utilizing a Bayes framework5

Gaussian processes for automating solving nonlinear PDEs/IPs

[Chen, Hosseni, Owhadi, Stuart 2021]

5Information based complexity, Bayes probabilistic numerics, ...
Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 21/34



The Methodology for Solving PDEs

A nonlinear elliptic PDE example
Consider the stationary elliptic PDE®

−∆u(x) + τ(u(x)) = f(x), ∀x ∈ Ω,

u(x) = g(x), ∀x ∈ ∂Ω.

Domain Ω ⊂ Rd.
PDE data f, g : Ω→ R.

PDE has a unique strong/classical solution u?.

Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 22/34



The Methodology6: Finding the MAP estimator

1 Choose a kernel K : Ω× Ω→ R (Choose the prior GP(0,K))
Corresponding RKHS U with norm ‖ · ‖

2 Sample some collocation points (Choose the data/likelihood)
X int = {x1, ...,xMΩ} ⊂ Ω
Xbd = {xMΩ+1, ...,xMΩ+M∂Ω} ⊂ ∂Ω

3 Solve the optimization problem (Find the “MAP”)
minimize

u∈U
‖u‖

s.t. −∆u(xm) + τ(u(xm)) = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

Convergence of solution as number of points approaches infinity
[Chen, Hosseni, Owhadi, Stuart 2021]

6Generalize many mesh-free methods and Bayes probabilistic numerics
Yifan Chen, Caltech Multiscale and Probabilistic Methods PKU, 2023 23/34



The Methodology6: Finding the MAP estimator

1 Choose a kernel K : Ω× Ω→ R (Choose the prior GP(0,K))
Corresponding RKHS U with norm ‖ · ‖

2 Sample some collocation points (Choose the data/likelihood)
X int = {x1, ...,xMΩ} ⊂ Ω
Xbd = {xMΩ+1, ...,xMΩ+M∂Ω} ⊂ ∂Ω

3 Solve the optimization problem (Find the “MAP”)
minimize

u∈U
‖u‖
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How to Solve: Separating Nonlinearity


minimize

u∈U
‖u‖

s.t. −∆u(xm) + τ(u(xm)) = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

m (N = Mbd + 2M int)

minimize
z=(zbd,zint,zint

∆ )∈RN



minimize
u∈U

‖u‖

s.t. u(Xbd) = zbd

u(X int) = zint

∆u(X int) = zint
∆

s.t. − zint
∆ + τ(zint) = f(X int)

zbd = g(Xbd)
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How to Solve: Inner optimization

The inner problem has linear constraints
minimize

u∈U
‖u‖

s.t. u(Xbd) = zbd, u(X int) = zint,∆u(X int) = zint
∆

Explicit formula for minimizer u(x) = K(x,φ)K(φ,φ)−1z

Measurement vector φ := (δXbd , δX int , δX int ◦∆) ∈ (U∗)⊗N
Kernel vector and matrix

K(x,φ) =
(
K(x, Xbd),K(x, X int),∆yK(x, X int)

)
∈ RN

K(φ,φ) =Ñ
K(Xbd, Xbd) K(Xbd, X int) ∆yK(Xbd, X int)
K(X int, Xbd) K(X int, X int) ∆yK(X int, X int)

∆xK(X int, Xbd) ∆xK(X int, X int) ∆x∆yK(X int, X int)

é
∈ RN×N
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How to Solve: Representation of the Minimizer

Representer theorem [Chen, Hosseni, Owhadi, Stuart 2021]

Every minimizer u† can be represented as

u†(x) = K(x,φ)K(φ,φ)−1z†,

where the vector z† ∈ RN is a minimizer of min
z∈RN

zTK(φ,φ)−1z

s.t. F (z) = y

Function F : RN → RM depends on PDE collocation constraints
y contains PDE boundary and RHS data
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Towards A Practical Algorithm

Quadratic optimization with nonlinear constraints

A simple linearization algorithm zk → zk+1 min
z∈RN

zTK(φ,φ)−1z

s.t. F (zk) + F ′(zk)(z− zk) = y.

“Newton’s iteration for the nonlinear PDE, faster than SGD”

Poor conditioning of K(φ,φ), and scale imbalance between blocks
Solution: adding scale-aware Tikhonov regularization

K(φ,φ)← K(φ,φ) + λdiag(K(φ,φ))
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Numerical Experiments

Nonlinear Elliptic Equation, τ(u) = u3®
−∆u(x) + τ(u(x)) = f(x), ∀x ∈ Ω,

u(x) = g(x), ∀x ∈ ∂Ω.

Truth: d = 2, u?(x) = sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2)

Kernel: K(x,y;σ) = exp
(
− |x−y|

2

2σ2

)
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Figure: Ndomain = 900, Nboundary = 124
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Convergence Study

For τ(u) = 0, u3, use Gaussian kernel with lengthscale σ
L2, L∞ accuracy, compared with Finite Difference (FD)
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Figure: Convergence of the kernel method is fast, since the solution is smooth
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Scalability: Sparse Cholesky Factorization

Sparse Cholesky of K(φ,φ)−1 under coarse to fine ordering of φ
screening effects [Stein 2002], [Schäfer, Sullivan, Owhadi 2021]

Complexity: O(Nρd) memory and O(Nρ2d) time; ρ is a parameter
theory: ρ = log(N/ε)⇒ ε-approximation of K(φ,φ)−1 even when φ
contains derivatives (best complexity so far) [Chen, Schäfer, Owhadi, 2023]
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Matérn kernel with different ν. Run 3 Newton’s iterations. Accuracy floor due
to finite ρ and regularization
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Numerical Experiments: Inverse Problems

Darcy Flow inverse problems
min
u,a
‖u‖2K + ‖a‖2Γ +

1

γ2

I∑
j=1

|u(xj)− oj |2,

s.t. −div(exp(a)∇u)(xm) = 1, ∀xm ∈ (0, 1)2

u(xm) = 0, ∀xm ∈ ∂(0, 1)2.

Recover a from pointwise measurements of u
Model (u, a) as independent GPs
Impose PDE constraints and formulate Bayesian inverse problem
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Numerical Experiments: Darcy Flow

Kernel K(x,x′;σ) = exp
(
− |x−x

′|2
2σ2

)
for both u and a
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Figure: Ndomain = 400, Nboundary = 100, Nobservation = 50
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Further Directions

GPs Model Misspecification: hierarchical learning to select kθ
analysis of large data consistency and implicit bias in learning θ
[Chen, Owhadi, Stuart 2021]

GPs Fast Solvers: multiscale algo for kernel matrices using probability
randomly pivoted Cholesky: provably effcient low rank approximation
[Chen, Epperly, Tropp, Webber 2022]

sparse Cholesky: state-of-the-art complexity O(N log2d(N/ε)) in time
[w/ Florian Schäfer, Houman Owhadi]

Uncertainty Quantification: beyond point estimators; sampling
affine invariant gradient flows, Gaussian mixtures, climate applications ...
[Chen, Huang, Huang, Reich, Stuart, 2023], ...

Fine-grained multiscale analysis + probabilistic inference
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Thanks!

https://yifanc96.github.io
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